• ↑↓ pour naviguer
  • pour ouvrir
  • pour sélectionner
  • ⌘ ⌥ ↵ pour ouvrir dans un panneau
  • esc pour rejeter
⌘ '
raccourcis clavier

format

for all vectors vv and vv of an inner product space, we have

u,v2u,u˙v,v\mid \langle u, v \rangle \mid ^2 \le \langle u, u \rangle \dot \langle v, v \rangle

In context of Euclidean norm:

xTyx2y2\mid x^T y \mid \le \|x\|_2 \|y\|_2

proof

using Pythagorean theorem

special case of v=0v=0. Then uv=0\|u\|\|v\| =0,

if uu and vv are linearly dependent., then q.e.d

Assume that v0v \neq 0. Let zuu,vv,vvz \coloneqq u - \frac{\langle u, v \rangle}{\langle v, v \rangle} v

It follows from linearity of inner product that

z,v=uu,vv,vv,v=u,vu,vv,vv,v=0\langle z,v \rangle = \langle u - \frac{\langle u,v \rangle}{\langle v, v \rangle} v,v \rangle = \langle u,v \rangle - \frac{\langle u,v \rangle}{\langle v,v \rangle}\langle v,v \rangle = 0

Therefore zz is orthogonal to vv (or zz is the projection onto the plane orthogonal to vv). We can then apply Pythagorean theorem for the following:

u=u,vv,vv+zu = \frac{\langle u,v \rangle}{\langle v,v \rangle} v + z

which gives

u2=u,vv,v2v2+z2=u,v2(v2)2v2+z2=u,v2v2+z2u,v2v2\begin{aligned} \|u\|^{2} &= \mid \frac{\langle u,v \rangle}{\langle v,v \rangle} \mid^{2} \|v\|^{2} + \|z\|^2 \\ &=\frac{\mid \langle u,v \rangle \mid^{2}}{(\|v\|^2)^{2}} \|v\|^{2} + \|z\|^2 \\ &= \frac{\mid \langle u, v \rangle\mid^2}{\|v\|^{2} } + \|z\|^2 \ge \frac{\mid \langle u,v \rangle \mid^2}{\|v\|^{2} }\\ \end{aligned}

Follows z2=0    z=0\|z\|^{2}=0 \implies z=0, which establishes linear dependences between uu and vv.

q.e.d