eiπ+1=0∵e:Euler’s numberi:imaginary unit satisfies i2=−1π:pi\begin{aligned} e^{i \pi} &+ 1 = 0 \\ \\ \because e &: \text{Euler's number} \\ i &: \text{imaginary unit satisfies } i^{2} = -1 \\ \pi &: \text{pi} \end{aligned}eiπ∵eiπ+1=0:Euler’s number:imaginary unit satisfies i2=−1:pi Special case of Euler’s formula: eiθ=cos(θ)+isin(θ)e^{i \theta} = \cos(\theta) + i \sin(\theta)eiθ=cos(θ)+isin(θ)