profile pic
⌘ '
raccourcis clavier

Problème 1.

Consider the following sequence of values S=[3,42,39,86,49,89,99,20,88,51,64]S = [3, 42, 39, 86, 49, 89, 99, 20, 88, 51, 64]

Note

We can represent tree textually via the following representation

13 (
	11 (
		8 (
			2
			4
		)
		12 (
			*
			1
		)
	)
	 7 (
		 5
		 6 (
			 99
			 *
		 )
	)
)

Where we use * as a placeholder for a missing child for those nodes that only have a single child.

P1.1

Draw the min heap (as a tree) obtained by adding the values in SS in sequence. Show each step

  1. S=[3]S = [3]. The root of the heap.

    3
  2. S=[3,42]S = [3, 42]. Added to the left of the root.

3 (
  42
  *
)
  1. S=[3,42,39]S = [3, 42, 39]. Added to the right of the root.
3 (
  42
  39
)
  1. S=[3,42,39,86]S = [3, 42, 39, 86]. Added to the left of the left child of the root. (42 < 86)
3 (
  42 (
    86
    *
  )
  39
)
  1. S=[3,42,39,86,49]S = [3, 42, 39, 86, 49]. Added to the right of 42.
3 (
  42 (
    86
    49
  )
  39
)
  1. S=[3,42,39,86,49,89]S = [3, 42, 39, 86, 49, 89]. Added to the left of 39.
3 (
  42 (
    86
    49
  )
  39 (
    89
  )
)
  1. S=[3,42,39,86,49,89,99]S = [3, 42, 39, 86, 49, 89, 99]. Added to the right of 39.
3 (
  42 (
    86
    49
  )
  39 (
    89
    99
  )
)
  1. S=[3,42,39,86,49,89,99,20]S = [3, 42, 39, 86, 49, 89, 99, 20]. 20 becomes left child of 86. (20 < 86) then swap. (20 < 42) then swap.
3 (
  20 (
    42
      (
        86
        *
      )
    49
  )
  39 (
    89
    99
  )
)
  1. S=[3,42,39,86,49,89,99,20,88]S = [3, 42, 39, 86, 49, 89, 99, 20, 88]. 88 becomes right of 42
3 (
  20 (
    42 (
      86
      88
    )
    49
  )
  39 (
    89
    99
  )
)
  1. S=[3,42,39,86,49,89,99,20,88,51]S = [3, 42, 39, 86, 49, 89, 99, 20, 88, 51]. 51 becomes right of 49
3 (
  20 (
    42 (
      86
      88
    )
    49 (
      51
      *
    )
  )
  39 (
    89
    99
  )
)
  1. S=[3,42,39,86,49,89,99,20,88,51,64]S = [3, 42, 39, 86, 49, 89, 99, 20, 88, 51, 64]. 64 becomes right of 49
3 (
  20 (
    42 (
      86
      88
    )
    49 (
      51
      64
    )
  )
  39 (
    89
    99
  )
)

P1.2

Draw the max heap (as a tree) obtained by adding the values in SS in sequence. Show each step

  1. S=[3]S = [3]. The root of the heap.
    3
  2. S=[3,42]S = [3, 42]. 42 becomes the root, 3 becomes left child.
42 (
  3
  *
)
  1. S=[3,42,39]S = [3, 42, 39]. 39 becomes right child.
42 (
  3
  39
)
  1. S=[3,42,39,86]S = [3, 42, 39, 86]. 86 becomes root. 42 becomes left child, 3 becomes left child of 42.
86 (
  42 (
    3
    *
  )
  39
)
  1. S=[3,42,39,86,49]S = [3, 42, 39, 86, 49]. 49 becomes left child of 86, swap 42, 42 becomes right child of 49.
86 (
  49 (
    3
    42
  )
  39
)
  1. S=[3,42,39,86,49,89]S = [3, 42, 39, 86, 49, 89]. 89 become routes, swap 86, 49.
89 (
  49 (
    3
    42
  )
  86 (
    39
    *
  )
)
  1. S=[3,42,39,86,49,89,99]S = [3, 42, 39, 86, 49, 89, 99]. 99 becomes root, swap 89, 49.
99 (
  49 (
    3
    42
  )
  89 (
    39
    86
  )
)
  1. S=[3,42,39,86,49,89,99,20]S = [3, 42, 39, 86, 49, 89, 99, 20]. 20 swap with 3, 3 becomes left child of 20.
99 (
  49 (
    20 (
      3
      *
    )
    42
    )
  89 (
    39
    86
  )
)
  1. S=[3,42,39,86,49,89,99,20,88]S = [3, 42, 39, 86, 49, 89, 99, 20, 88]. 88 becomes left child of 99, swap 49, 20.
99 (
  88 (
    49 (
      20 (
        3
        *
      )
      *
    )
    42
  )
  89 (
    39
    86
  )
)
  1. S=[3,42,39,86,49,89,99,20,88,51]S = [3, 42, 39, 86, 49, 89, 99, 20, 88, 51]. 51 becomes right child of 88, swap 42, 20.
99 (
  88 (
    51 (
      42 (
        20 (
          3
          *
        )
      )
      *
    )
    49
  )
  89 (
    39
    86
  )
)
  1. S=[3,42,39,86,49,89,99,20,88,51,64]S = [3, 42, 39, 86, 49, 89, 99, 20, 88, 51, 64]. 64, pushes 49 down.
99 (
  88 (
    51 (
      42 (
        20 (
          3
          *
        )
      )
      *
    )
    64 (
      49
      *
    )
  )
  89 (
    39
    86
  )
)

P1.3

Draw the binary search tree obtained by adding the values in SS in sequence. Show each step

  1. S=[3]S = [3]. The root of the tree.

    3
  2. S=[3,42]S = [3, 42]. 42 becomes the right child of 3.

3 (
  *
  42
)
  1. S=[3,42,39]S = [3, 42, 39]. 39 becomes the left child of 42.
3 (
  *
  42 (
    39
    *
  )
)
  1. S=[3,42,39,86]S = [3, 42, 39, 86]. 86 becomes the right child of 42.
3 (
  *
  42 (
    39
    86
  )
)
  1. S=[3,42,39,86,49]S = [3, 42, 39, 86, 49]. 49 becomes the left child of 86.
3 (
  *
  42 (
    39
    86 (
      49
      *
    )
  )
)
  1. S=[3,42,39,86,49,89]S = [3, 42, 39, 86, 49, 89]. 89 becomes the right child of 86.
3 (
  *
  42 (
    39
    86 (
      49
      89
    )
  )
)
  1. S=[3,42,39,86,49,89,99]S = [3, 42, 39, 86, 49, 89, 99]. 99 becomes the right child of 89.
3 (
  *
  42 (
    39
    86 (
      49
      89 (
        *
        99
      )
    )
  )
)
  1. S=[3,42,39,86,49,89,99,20]S = [3, 42, 39, 86, 49, 89, 99, 20]. 20 becomes the left child of 39.
3 (
  *
  42 (
    39 (
      20
      *
    )
    86 (
      49
      89 (
        *
        99
      )
    )
  )
)
  1. S=[3,42,39,86,49,89,99,20,88]S = [3, 42, 39, 86, 49, 89, 99, 20, 88]. 88 becomes the right child of 86.
3 (
  *
  42 (
    39 (
      20
      *
    )
    86 (
      49
      89 (
        88
        99
      )
    )
  )
)
  1. S=[3,42,39,86,49,89,99,20,88,51]S = [3, 42, 39, 86, 49, 89, 99, 20, 88, 51]. 51 becomes the right child of 49.
3 (
  *
  42 (
    39 (
      20
      *
    )
    86 (
      49 (
        *
        51
      )
      89 (
        88
        99
      )
    )
  )
)
  1. S=[3,42,39,86,49,89,99,20,88,51,64]S = [3, 42, 39, 86, 49, 89, 99, 20, 88, 51, 64]. 64 becomes the left child of 51.
3 (
	*
	42 (
		39 (
			20
			*
		)
		86 (
			49 (
				*
				51 (
					*
					64
				)
			)
			89 (
				88
				99
			)
		)
	)
)

Problème 2.

Given an ordered list LL and value vv, the LowerBound algorithm provide the position pp in list LL such that pp is the first offset in LL of a value larger-equal to vv. Hence, vL[p]v \leq L[p] (or, if no such offset exists, p=Lp = |L|). The LowerBound algorithm does so in Θ(log2(L))\Theta(\log_2(|L|)) comparisons. Argue that LowerBound is worst-case optimal: any algorithm that finds the correct position pp for any inputs LL and vv using only comparisons will require Θ(log2(L))\Theta(\log_2(|L|)) comparisons.

Solution

For a list of size L|L| there are L+1|L| + 1 possible outcomes for the position pp in the list. The minimum height of a binary tree needed for L+1|L| + 1 outcomes is log2(L+1)\log_2(|L| + 1) (at most 2h2^h leaves or 2hL+1hlog2(L+1)2^h \geq |L| + 1 \rightarrow h \geq \log_2(|L| +1)

From Stirling’s approximation, comparison-based sorting algorithm lower bound is Ω(nlog(n))\Omega(n \log(n)). Given that the algorithm operates in Θ(log2(L))\Theta(\log_2(|L|)) comparisons, it matches with the theoretical lower bound for the search algorithm. Therefore, no comparison-based algorithm can guarantee a better worst-case performance for position pp, making LowerBound the worst-case optimal.

Problème 3.

Min heaps and max heaps allow one to efficiently store values and efficiently look up and remove the smallest values and largest values, respectively. One cannot easily remove the largest value from a min heap or the smallest value from a max heap, however.

P3.1

Assume a value vv is a part of a min heap of at-most nn values and that we know v is stored at position pp in that heap. Provide an algorithm that can remove vv from the heap in worst-case O(log2(n))\mathcal{O}(\log_2(n))

"\\begin{algorithm}\n\\caption{RemoveValue($heap, p$)}\n\\begin{algorithmic}\n\\Procedure{RemoveValue}{$heap, i$}\n \\State $n \\gets heap.length$\n \\State $temp \\gets heap[p]$\n \\State $heap[p] \\gets heap[n]$\n \\State $heap[n] \\gets temp$\n \\State $heap \\gets heap[:n]$\n \\State $\\text{HeapifyDown}(heap, p)$\n\\EndProcedure\n\\end{algorithmic}\n\\end{algorithm}"

Algorithm 26 RemoveValue(heap,pheap, p)

1:procedure RemoveValue(heap,iheap, i)

2:nheap.lengthn \gets heap.length

3:tempheap[p]temp \gets heap[p]

4:heap[p]heap[n]heap[p] \gets heap[n]

5:heap[n]tempheap[n] \gets temp

6:heapheap[:n]heap \gets heap[:n]

7:HeapifyDown(heap,p)\text{HeapifyDown}(heap, p)

8:end procedure

"\\begin{algorithm}\n\\caption{HeapifyDown($heap, p$)}\n\\begin{algorithmic}\n\\Procedure{HeapifyDown}{$heap, i$}\n \\State $n \\gets \\text{size of } heap$\n \\While{$\\text{lchild}(i) \\leq n$}\n \\State $\\text{left} \\gets \\text{lchild}(i)$\n \\State $\\text{right} \\gets \\text{rchild}(i)$\n \\State $\\text{smallest} \\gets i$\n \\If{$\\text{left} \\leq n \\text{ and } heap[\\text{left}] < heap[\\text{smallest}]$}\n \\State $\\text{smallest} \\gets \\text{left}$\n \\EndIf\n \\If{$\\text{right} \\leq n \\text{ and } heap[\\text{right}] < heap[\\text{smallest}]$}\n \\State $\\text{smallest} \\gets \\text{right}$\n \\EndIf\n\n \\If{$\\text{smallest} = i$}\n \\State \\textbf{break}\n \\Else\n \\State $\\text{Swap } heap[i] \\text{ with } heap[\\text{smallest}]$\n \\State $i \\gets \\text{smallest}$\n \\EndIf\n \\EndWhile\n\\EndProcedure\n\\end{algorithmic}\n\\end{algorithm}"

Algorithm 27 HeapifyDown(heap,pheap, p)

1:procedure HeapifyDown(heap,iheap, i)

2:nsize of heapn \gets \text{size of } heap

3:while lchild(i)n\text{lchild}(i) \leq n do

4:leftlchild(i)\text{left} \gets \text{lchild}(i)

5:rightrchild(i)\text{right} \gets \text{rchild}(i)

6:smallesti\text{smallest} \gets i

7:if leftn and heap[left]<heap[smallest]\text{left} \leq n \text{ and } heap[\text{left}] < heap[\text{smallest}] then

8:smallestleft\text{smallest} \gets \text{left}

9:end if

10:if rightn and heap[right]<heap[smallest]\text{right} \leq n \text{ and } heap[\text{right}] < heap[\text{smallest}] then

11:smallestright\text{smallest} \gets \text{right}

12:end if

13:if smallest=i\text{smallest} = i then

14:break

15:else

16:Swap heap[i] with heap[smallest]\text{Swap } heap[i] \text{ with } heap[\text{smallest}]

17:ismallesti \gets \text{smallest}

18:end if

19:end while

20:end procedure

P3.2

Provide a data structure that allows one to efficiently store values and efficiently look up and remove both the smallest and the largest values: all three of these operations should be supported in Θ(log2(n))\Theta(\log_2(n))

We will implement a Double-ended Priority Queue (DEPQ), which is a min-max heap.

"\\begin{algorithm}\n\\caption{Insert($heap, v$)}\n\\begin{algorithmic}\n\\Procedure{Insert}{$heap, v$}\n \\State $heap.push(v)$\n \\State $\\text{Swim}(heap, \\text{size}(heap))$\n\\EndProcedure\n\\end{algorithmic}\n\\end{algorithm}"

Algorithm 28 Insert(heap,vheap, v)

1:procedure Insert(heap,vheap, v)

2:heap.push(v)heap.push(v)

3:Swim(heap,size(heap))\text{Swim}(heap, \text{size}(heap))

4:end procedure

"\\begin{algorithm}\n\\caption{RemoveMin($heap$)}\n\\begin{algorithmic}\n\\Procedure{RemoveMin}{$heap$}\n \\State $n \\gets \\text{size}(heap)$\n \\State $temp \\gets heap[1]$\n \\State $heap[1] \\gets heap[\\text{size}(heap)]$\n \\State $heap[n] \\gets temp$\n \\State $heap \\gets heap[:n]$\n \\State $\\text{Sink}(heap, 1)$\n\\EndProcedure\n\\end{algorithmic}\n\\end{algorithm}"

Algorithm 29 RemoveMin(heapheap)

1:procedure RemoveMin(heapheap)

2:nsize(heap)n \gets \text{size}(heap)

3:tempheap[1]temp \gets heap[1]

4:heap[1]heap[size(heap)]heap[1] \gets heap[\text{size}(heap)]

5:heap[n]tempheap[n] \gets temp

6:heapheap[:n]heap \gets heap[:n]

7:Sink(heap,1)\text{Sink}(heap, 1)

8:end procedure

"\\begin{algorithm}\n\\caption{RemoveMax($heap$)}\n\\begin{algorithmic}\n\\Procedure{RemoveMax}{$heap$}\n \\State $maxPos \\gets \\text{argmax}\\{heap[2], heap[3]\\}$\n \\State $heap[maxPos] \\gets heap[\\text{size}(heap)]$\n \\State $\\text{remove last el from} heap$\n \\State $\\text{Sink}(heap, maxPos)$\n\\EndProcedure\n\\end{algorithmic}\n\\end{algorithm}"

Algorithm 30 RemoveMax(heapheap)

1:procedure RemoveMax(heapheap)

2:maxPosargmax{heap[2],heap[3]}maxPos \gets \text{argmax}\{heap[2], heap[3]\}

3:heap[maxPos]heap[size(heap)]heap[maxPos] \gets heap[\text{size}(heap)]

4:remove last el fromheap\text{remove last el from} heap

5:Sink(heap,maxPos)\text{Sink}(heap, maxPos)

6:end procedure

"\\begin{algorithm}\n\\caption{Swim($heap, i$)}\n\\begin{algorithmic}\n\\Procedure{Swim}{$heap, i$}\n \\While{$i > 1$}\n \\State $parent \\gets \\lfloor i/2 \\rfloor$\n \\State $grandParent \\gets \\lfloor parent/2 \\rfloor$\n \\If{$(i \\mod 2 = 0 \\text{ and } heap[i] < heap[parent]) \\text{ or } (i \\mod 2 \\neq 0 \\text{ and } heap[i] > heap[parent])$}\n \\State $\\text{Swap}(heap[i], heap[parent])$\n \\EndIf\n \\If{$grandParent \\geq 1 \\text{ and } (heap[i] < heap[grandParent] \\text{ or } heap[i] > heap[grandParent])$}\n \\State $\\text{Swap}(heap[i], heap[grandParent])$\n \\EndIf\n \\State $i \\gets parent$\n \\EndWhile\n\\EndProcedure\n\\end{algorithmic}\n\\end{algorithm}"

Algorithm 31 Swim(heap,iheap, i)

1:procedure Swim(heap,iheap, i)

2:while i>1i > 1 do

3:parenti/2parent \gets \lfloor i/2 \rfloor

4:grandParentparent/2grandParent \gets \lfloor parent/2 \rfloor

5:if (imod2=0 and heap[i]<heap[parent]) or (imod20 and heap[i]>heap[parent])(i \mod 2 = 0 \text{ and } heap[i] < heap[parent]) \text{ or } (i \mod 2 \neq 0 \text{ and } heap[i] > heap[parent]) then

6:Swap(heap[i],heap[parent])\text{Swap}(heap[i], heap[parent])

7:end if

8:if grandParent1 and (heap[i]<heap[grandParent] or heap[i]>heap[grandParent])grandParent \geq 1 \text{ and } (heap[i] < heap[grandParent] \text{ or } heap[i] > heap[grandParent]) then

9:Swap(heap[i],heap[grandParent])\text{Swap}(heap[i], heap[grandParent])

10:end if

11:iparenti \gets parent

12:end while

13:end procedure

"\\begin{algorithm}\n\\caption{Sink($heap, i$)}\n\\begin{algorithmic}\n\\Procedure{Sink}{$heap, i$}\n \\State $n \\gets \\text{size}(heap)$\n \\While{$\\text{lchild}(i) \\leq n$}\n \\State $left \\gets \\text{lchild}(i)$\n \\State $right \\gets \\text{rchild}(i)$\n \\State $target \\gets i$\n\n \\If{$\\text{on min level and } heap[left] < heap[target]$}\n \\State $target \\gets left$\n \\ElsIf{$\\text{on max level and } heap[left] > heap[target]$}\n \\State $target \\gets left$\n \\EndIf\n \\If{$right \\leq \\text{size}(heap)$}\n \\If{$\\text{on min level and } heap[right] < heap[target]$}\n \\State $target \\gets right$\n \\ElsIf{$\\text{on max level and } heap[right] > heap[target]$}\n \\State $target \\gets right$\n \\EndIf\n \\EndIf\n\n \\If{$target = i$}\n \\State \\textbf{break}\n \\Else\n \\State $\\text{Swap}(heap[i], heap[target])$\n \\State $i \\gets target$\n \\EndIf\n \\EndWhile\n\\EndProcedure\n\\end{algorithmic}\n\\end{algorithm}"

Algorithm 32 Sink(heap,iheap, i)

1:procedure Sink(heap,iheap, i)

2:nsize(heap)n \gets \text{size}(heap)

3:while lchild(i)n\text{lchild}(i) \leq n do

4:leftlchild(i)left \gets \text{lchild}(i)

5:rightrchild(i)right \gets \text{rchild}(i)

6:targetitarget \gets i

7:if on min level and heap[left]<heap[target]\text{on min level and } heap[left] < heap[target] then

8:targetlefttarget \gets left

9:else if on max level and heap[left]>heap[target]\text{on max level and } heap[left] > heap[target] then

10:targetlefttarget \gets left

11:end if

12:if rightsize(heap)right \leq \text{size}(heap) then

13:if on min level and heap[right]<heap[target]\text{on min level and } heap[right] < heap[target] then

14:targetrighttarget \gets right

15:else if on max level and heap[right]>heap[target]\text{on max level and } heap[right] > heap[target] then

16:targetrighttarget \gets right

17:end if

18:end if

19:if target=itarget = i then

20:break

21:else

22:Swap(heap[i],heap[target])\text{Swap}(heap[i], heap[target])

23:itargeti \gets target

24:end if

25:end while

26:end procedure