Radix tree A prefix trie in which each node that is the only child is merged with its parent.
By Claudio Rocchini - Own work, CC BY 2.5, wikimedia
result: number of all internal nodes is at most the radix r r r of the tree, where r = 2 x ∀ x ∈ R d ∩ x ≥ 1 r=2^{x} \forall x \in \mathbb{R}^d \cap x \ge 1 r = 2 x ∀ x ∈ R d ∩ x ≥ 1
Edge can be labelled with sequences of elements as well as single elements.
key at each node is compared chunk-of-bits, where quantity of bits in any given chunk is the radix r r r of the radix tree:
r = 2 r=2 r = 2 then radix trie is binary, which minimise sparsity at the expense of maximising trie-depth
r ≥ 4 r \ge 4 r ≥ 4 is a power of two, then it is a r-ary trie, which lessen the depth at the expense of some sparseness
Lookup pseudocode :
"\\begin{algorithm}\n\\caption{Lookup}\n\\begin{algorithmic}\n\\State $\\text{traverseNode} \\gets \\text{root}$\n\\State $\\text{elementsFound} \\gets 0$\n\\While{traverseNode $\\neq \\text{null} \\land \\neg \\text{traverseNode}.\\text{isLeaf}() \\land \\text{elementsFound} < \\text{length}(x)$}\n \\State nextEdge $\\gets$ select edge from traverseNode.edges where edge.label is a prefix of $x.\\text{suffix}(\\text{elementsFound})$\n \\If{nextEdge $\\neq \\text{null}$}\n \\State traverseNode $\\gets$ nextEdge.targetNode\n \\State elementsFound $\\gets$ elementsFound + length(nextEdge.label)\n \\Else\n \\State traverseNode $\\gets$ null\n \\EndIf\n\\EndWhile\n\\State \\Return traverseNode $\\neq \\text{null} \\land \\text{traverseNode}.\\text{isLeaf}() \\land \\text{elementsFound} = \\text{length}(x)$\n\\end{algorithmic}\n\\end{algorithm}"
Algorithm 2 Lookup
1: traverseNode ← root \text{traverseNode} \gets \text{root} traverseNode ← root
2: elementsFound ← 0 \text{elementsFound} \gets 0 elementsFound ← 0
3: while traverseNode ≠ null ∧ ¬ traverseNode . isLeaf ( ) ∧ elementsFound < length ( x ) \neq \text{null} \land \neg \text{traverseNode}.\text{isLeaf}() \land \text{elementsFound} < \text{length}(x) = null ∧ ¬ traverseNode . isLeaf ( ) ∧ elementsFound < length ( x ) do
4: nextEdge ← \gets ← select edge from traverseNode.edges where edge.label is a prefix of x . suffix ( elementsFound ) x.\text{suffix}(\text{elementsFound}) x . suffix ( elementsFound )
5: if nextEdge ≠ null \neq \text{null} = null then
6: traverseNode ← \gets ← nextEdge.targetNode
7: elementsFound ← \gets ← elementsFound + length(nextEdge.label)
8: else
9: traverseNode ← \gets ← null
10: end if
11: end while
12:
13: return traverseNode ≠ null ∧ traverseNode . isLeaf ( ) ∧ elementsFound = length ( x ) \neq \text{null} \land \text{traverseNode}.\text{isLeaf}() \land \text{elementsFound} = \text{length}(x) = null ∧ traverseNode . isLeaf ( ) ∧ elementsFound = length ( x )
complexity
Permits lookup, deletion, insertion in O ( k ) O(k) O ( k ) rather than O ( log n ) O(\log n) O ( log n )
Normally k ≥ log n k \ge \log n k ≥ log n , but in a balanced tree every comparison is a string comparison requires O ( k ) O(k) O ( k ) worse-case time. Whereas in a trie all comparison require constant times, but takes m m m comparisons to look up a string length m m m