profile pic
⌘ '
raccourcis clavier

A prefix trie in which each node that is the only child is merged with its parent.

By Claudio Rocchini - Own work, CC BY 2.5, wikimedia

result: number of all internal nodes is at most the radix rr of the tree, where r=2xxRdx1r=2^{x} \forall x \in \mathbb{R}^d \cap x \ge 1

Edge can be labelled with sequences of elements as well as single elements.

key at each node is compared chunk-of-bits, where quantity of bits in any given chunk is the radix rr of the radix tree:

  • r=2r=2 then radix trie is binary, which minimise sparsity at the expense of maximising trie-depth
  • r4r \ge 4 is a power of two, then it is a r-ary trie, which lessen the depth at the expense of some sparseness

Lookup pseudocode:

"\\begin{algorithm}\n\\caption{Lookup}\n\\begin{algorithmic}\n\\State $\\text{traverseNode} \\gets \\text{root}$\n\\State $\\text{elementsFound} \\gets 0$\n\\While{traverseNode $\\neq \\text{null} \\land \\neg \\text{traverseNode}.\\text{isLeaf}() \\land \\text{elementsFound} < \\text{length}(x)$}\n \\State nextEdge $\\gets$ select edge from traverseNode.edges where edge.label is a prefix of $x.\\text{suffix}(\\text{elementsFound})$\n \\If{nextEdge $\\neq \\text{null}$}\n \\State traverseNode $\\gets$ nextEdge.targetNode\n \\State elementsFound $\\gets$ elementsFound + length(nextEdge.label)\n \\Else\n \\State traverseNode $\\gets$ null\n \\EndIf\n\\EndWhile\n\\State \\Return traverseNode $\\neq \\text{null} \\land \\text{traverseNode}.\\text{isLeaf}() \\land \\text{elementsFound} = \\text{length}(x)$\n\\end{algorithmic}\n\\end{algorithm}"

Algorithm 2 Lookup

1:traverseNoderoot\text{traverseNode} \gets \text{root}

2:elementsFound0\text{elementsFound} \gets 0

3:while traverseNode null¬traverseNode.isLeaf()elementsFound<length(x)\neq \text{null} \land \neg \text{traverseNode}.\text{isLeaf}() \land \text{elementsFound} < \text{length}(x) do

4:nextEdge \gets select edge from traverseNode.edges where edge.label is a prefix of x.suffix(elementsFound)x.\text{suffix}(\text{elementsFound})

5:if nextEdge null\neq \text{null} then

6:traverseNode \gets nextEdge.targetNode

7:elementsFound \gets elementsFound + length(nextEdge.label)

8:else

9:traverseNode \gets null

10:end if

11:end while

12:

13:return traverseNode nulltraverseNode.isLeaf()elementsFound=length(x)\neq \text{null} \land \text{traverseNode}.\text{isLeaf}() \land \text{elementsFound} = \text{length}(x)

complexity

Permits lookup, deletion, insertion in O(k)O(k) rather than O(logn)O(\log n)

Normally klognk \ge \log n, but in a balanced tree every comparison is a string comparison requires O(k)O(k) worse-case time. Whereas in a trie all comparison require constant times, but takes mm comparisons to look up a string length mm